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Problems 

¨  The following problems from the textbook are 
relevant: 
¤ 2.1 – 2.9, 2.11, 2.17 

¨  For this week, please at least solve Problem 2.3.  
We will go over this in class. 
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Credits 

¨  Some of these slides were sourced and/or modified 
from: 
¤ Christopher Bishop, Microsoft UK 
¤ Simon Prince, University College London 
¤ Sergios Theodoridis, University of Athens & Konstantinos 

Koutroumbas, National Observatory of Athens 
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Bayesian Decision Theory:  Topics 

1.  Probability 
2.  The Univariate Normal Distribution 
3.  Bayesian Classifiers 
4.  Minimizing Risk 
5.  Nonparametric Density Estimation 
6.  Training and Evaluation Methods 
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Bayesian Decision Theory:  Topics 

1.  Probability 
2.  The Univariate Normal Distribution 
3.  Bayesian Classifiers 
4.  Minimizing Risk 
5.  Nonparametric Density Estimation 
6.  Training and Evaluation Methods 



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

6 

Probability 

¨  “Probability theory is nothing but common sense 
reduced to calculation” 

 - Pierre Laplace, 1812. 
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Random Variables 

¨  A random variable is a variable whose value is uncertain. 

¨  For example, the height of a randomly selected person in this 
class is a random variable – I won’t know its value until the 
person is selected. 

¨  Note that we are not completely uncertain about most random 
variables.   
¤  For example, we know that height will probably be in the 5’-6’ range.   

¤  In addition, 5’6” is more likely than 5’0” or 6’0”.  

¨  The function that describes the probability of each possible 
value of the random variable is called a probability 
distribution. 
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Probability Distributions 

¨  For a discrete distribution, the probabilities over all 
possible values of the random variable must sum to 1. 
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Probability Distributions 
¨  For a discrete distribution, we can talk about the probability of a particular score 

occurring, e.g., p(Province = Ontario) = 0.36. 

¨  We can also talk about the probability of any one of a subset of scores occurring, 
e.g., p(Province = Ontario or Quebec) = 0.50. 

¨  In general, we refer to these occurrences as events. 
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Probability Distributions 

¨  For a continuous distribution, the probabilities over all possible values of 
the random variable must integrate to 1 (i.e., the area under the curve must 
be 1). 

¨  Note that the height of a continuous distribution can exceed 1! 

S h a d e d   a r e a   =   0 . 6 8 3 S h a d e d   a r e a   =   0 . 9 5 4 S h a d e d   a r e a   =   0 . 9 9 7 
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Continuous Distributions 

¨  For continuous distributions, it does not make sense to talk about the 
probability of an exact score. 
¤  e.g., what is the probability that your height is exactly 65.485948467… inches? 
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Continuous Distributions 

¨  It does make sense to talk about the probability of observing a score that falls within a certain 
range 
¤  e.g., what is the probability that you are between 5’3” and 5’7”? 

¤  e.g., what is the probability that you are less than 5’10”? 
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Probability Densities 

Probability density (PDF) 

Cumulative distribution (CDF) 



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

14 

Transformed Densities 

¨  Consider a random variable x with probability 
density px(x). 

¨  Suppose you have another variable y that is 
defined to be a function of x:  y = f(x). 

¨  y is also a random variable.  What is its probability 
density py(y)? 

¨  Caution:  in general, py(y) ≠ px(f-1(y)). 
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Transformed Densities 

¨  This is a difficult 
problem in general. 

¨  However, it is tractable 
when f(x) is monotonic, 
and hence invertible. 

¨  In this case, we can 
solve for the pdf py(y) 
by differentiating the 
cdf Py(y).  

y 

x 

y = f(x) 
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Transformed Densities 

¨  Let’s assume that y is monotonically increasing in x.  
Then we can write 

 
¨  Taking derivatives, we get 

  
Py (y) = P f (x) ≤ y( ) = P x ≤ f −1(y)( ) = Px f −1(y)( )

   

py (y) 
d
dy

Py (y) = d
dy

Px f −1(y)( ) = dx
dy

d
dx

Px x( ) = dx
dy

px x( )
where x = f −1(y).

Note that 
dx
dy

> 0 in this case.
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Transformed Densities 

¨  If y is monotonically decreasing in x, using the same method it 
is easy to show that 

¨  Thus a general expression that applies when y is monotonic on 
x is: 

  

py (y) = − dx
dy

px x( )
where x = f −1(y).

Note that 
dx
dy

< 0 in this case.

  

py (y) = dx
dy

px x( ),
where x = f −1(y).



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

18 

Transformed Densities: Intuition 

  Observations falling within x + δx( )  tranform to the range y + δy( )

  → px (x) δx = py (y ) δy

   
→ py (y )  px (x) δx

δy

  Note that in general, δy ≠ δx.

  
Rather, δy

δx → dy
dx  as δx → 0.

  
Thus py (y ) = px (x) dx

dy

f(x) 
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Joint Distributions 

Marginal Probability 

Conditional Probability 

Joint	  Probability	  
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Joint Distributions 

 Sum Rule 

Product	  Rule	  
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Joint Distributions:  The Rules of Probability 

¨  Sum Rule 

¨  Product Rule 
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Marginalization 

We can recover probability distribution of any variable in a joint distribution 
by integrating (or summing) over the other variables 
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Conditional Probability 

¨  Conditional probability of X given that Y=y* is relative 
propensity of variable X to take different outcomes given that 
Y is fixed to be equal to y* 

¨  Written as Pr(X|Y=y*) 
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Conditional Probability 

¨  Conditional probability can be extracted from joint probability 
¨  Extract appropriate slice and normalize 
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Conditional Probability 

¨  More usually written in compact form 

•  Can be re-arranged to give 
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Independence 

¨  If two variables X and Y are independent then variable X tells 
us nothing about variable Y (and vice-versa) 
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Independence 

¨  When variables are independent, the joint factorizes into a 
product of the marginals: 
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Bayes’ Rule 

From before: 

Combining: 

Re-arranging: 
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Bayes’ Rule Terminology 

Posterior – what we know 
about y after seeing x 

Prior – what we know 
about y before seeing x 

Likelihood – propensity for 
observing a certain value of 
X given a certain value of Y 

Evidence –a constant to 
ensure that the left hand 
side is a valid distribution 
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Expectations 

¨  Let f(x) be some function of a random variable x.  
Then we define: 

Condi3onal	  Expecta3on	  
(discrete)	  

Approximate	  Expecta3on	  
(discrete	  and	  con3nuous)	  
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Variances and Covariances 



Sept 10, 2012 

End of Lecture   
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Bayesian Decision Theory:  Topics 

1.  Probability 
2.  The Univariate Normal Distribution 

3.  Bayesian Classifiers 
4.  Minimizing Risk 
5.  Nonparametric Density Estimation 
6.  Training and Evaluation Methods 
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The Gaussian Distribution 

MATLAB Statistics Toolbox Function:   
normpdf(x,mu,sigma) 
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Central Limit Theorem  

¨ The distribution of the mean of N i.i.d. random 
variables becomes increasingly Gaussian as N grows. 
¨ Example: N uniform [0,1] random variables. 
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Gaussian Mean and Variance 
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Bayesian Decision Theory:  Topics 

1.  Probability 
2.  The Univariate Normal Distribution 
3.  Bayesian Classifiers 

4.  Minimizing Risk 
5.  Nonparametric Density Estimation 
6.  Training and Evaluation Methods 
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Bayesian Classification 

¨  Input feature vectors 

¨  Assign the pattern represented by feature vector x 
to the most probable of the available classes 
 
 
 
 
That is, 

   
x = x1,x2,...,xl

⎡⎣ ⎤⎦
T

  ω1,ω 2,...,ωM

   x →ω i :P(ω i | x) is maximum.

Posterior 
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¨  Computation of posterior probabilities 
¤  Assume known 

n  Prior probabilities 

n   Likelihoods 
  

  P(ω1),P(ω 2)...,P(ωM )

   
p x |ω i( ), i = 1,2,…,M

Bayesian Classification 
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Bayes’ Rule for Classification 

   
p ω i | x( ) = p x |ω i( )p ω i( )

p x( ) ,

   

where 

p x( ) = p x |ω i( )p ω i( )
i=1

M

∑
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M=2 Classes 

41 ¨  Given x classify it according to the rule 

 

¨  Equivalently:  classify x according to the rule  

 

¨  For equiprobable classes the test becomes 

   

If P(ω1 x) > P(ω 2 x)  →ω1

If P(ω 2 x) > P(ω1 x)  →ω 2

   

If p x |ω1( )P ω1( ) > p x |ω 2( )P ω 2( )→ω1

If p x |ω 2( )P ω 2( ) > p x |ω1( )P ω1( )→ω 2

  

If p x |ω1( ) > p x |ω 2( )→ω1

If p x |ω 2( ) > p x |ω1( )→ω 2
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Example: Equiprobable Classes  

)()( 2211 ωω →→ RR  and 
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Example:  Equiprobable Classes 

43 ¨  Probability of error 
¤  The black and red shaded areas represent 

¤  Thus 

 

¨  Bayesian classifier is OPTIMAL:  it 
minimizes the classification error 
probability 

   

Pe  P(error)
= P ω2( )P error|ω2( ) + P ω 1( )P error|ω 1( )
= 1

2 p(x ω2 )dx +
−∞

x0

∫
1
2 p(x ω 1 )dx

x0

+∞

∫

  
P error | ω2( ) = p(x ω2 )dx

−∞

x0

∫
  
P error | ω 1( ) = p(x ω 1 )dx

x0

∞

∫and 
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Example:  Equiprobable Classes 

¨  To see this, observe that 
shifting the threshold 
increases the error rate 
for one class of patterns 
more than it decreases 
the error rate for the 
other class. 
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¨  In general, for M classes and unequal priors, the decision rule 
 
 
minimizes the expected error rate. 

The General Case 

45 

   
P(ω i | x) > P(ω j | x)  ∀j ≠ i →ω i
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Types of Error 

¨  Minimizing the expected error rate is a pretty 
reasonable goal. 

¨  However, it is not always the best thing to do. 
¨  Example:   

¤  You are designing a pedestrian detection algorithm for an 
autonomous navigation system. 

¤  Your algorithm must decide whether there is a pedestrian 
crossing the street. 

¤  There are two possible types of error: 
n  False positive:  there is no pedestrian, but the system thinks there 

is. 
n  Miss:  there is a pedestrian, but the system thinks there is not. 

¤  Should you give equal weight to these 2 types of error? 
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Bayesian Decision Theory:  Topics 

1.  Probability 
2.  The Univariate Normal Distribution 
3.  Bayesian Classifiers 
4.  Minimizing Risk 

5.  Nonparametric Density Estimation 
6.  Training and Evaluation Methods 



Topic 4.  Minimizing Risk 
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The Loss Matrix 

¨  To deal with this problem, instead of minimizing error 
rate, we minimize something called the risk. 

¨  First, we define the loss matrix L, which quantifies the 
cost of making each type of error. 

¨  Element λij of the loss matrix specifies the cost of 
deciding class j when in fact the input is of class i. 

¨  Typically, we set λii=0 for all i. 
¨  Thus a typical loss matrix for the M = 2 case would have 

the form 

  

L =
0 λ12

λ21 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Risk 

¨  Given a loss function, we can now define the risk 
associated with each class k as: 

¨  where Ri is the region of the input space where we 
will decide ωi. 

   
rk = λki p x |ωk( )dx

Ri

∫
i=1

M

∑

  Probability we will decide Class ω i  given pattern from Class ωk
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Minimizing Risk 

¨  Now the goal is to minimize the expected risk r, 
given by 

  
r = rkP ωk( )

k=1

M

∑
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Minimizing Risk 

¨  We need to select the decision regions Ri to minimize the risk r. 
¨  Note that the set of Ri are disjoint and exhaustive. 

¨  Thus we can minimize the risk by ensuring that each input x 
falls in the region Ri that minimizes the expected loss for that 
particular input, i.e., 

  
r = rkP ωk( )

k=1

M

∑
   
rk = λki p x |ωk( )dx

Ri

∫
i=1

M

∑

   

Letting li = λki p x | ωk( )P ωk( )
k=1

M
∑ ,

we select the partioning regions such that
x ∈Ri if  li < lj   ∀j ≠ i

where 
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Example:  M=2 

¨  For the 2-class case: 

   and 

 

¨  Thus we assign x to ω1 if 

 

¨  i.e., if  

   l1 = λ11p x | ω 1( )P ω 1( ) + λ21p x | ω2( )P ω2( )

   l2 = λ12p x | ω 1( )P ω 1( ) + λ22p x | ω2( )P ω2( )

   λ21 − λ22( ) p x | ω2( )P ω2( ) < λ12 − λ11( ) p x | ω 1( )P ω 1( )

   

p x | ω 1( )
p x | ω2( ) >

P ω2( ) λ21 − λ22( )
P ω 1( ) λ12 − λ11( ) .

Likelihood Ratio Test 
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Likelihood Ratio Test 

¨  Typically, the loss for a correct decision is 0.  Thus the likelihood 
ratio test becomes 

¨  In the case of equal priors and equal loss functions, the test 
reduces to 

   

p x | ω 1( )
p x | ω2( ) >

P ω2( ) λ21 − λ22( )
P ω 1( ) λ12 − λ11( ) .

   

p x | ω 1( )
p x | ω2( ) >

P ω2( )λ21

P ω 1( )λ12

.

   

p x | ω 1( )
p x | ω2( ) > 1.

? 

? 

? 
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Example 

¨  Consider a one-dimensional input space, with features 
generated by normal distributions with identical variance: 

 

 

    where 

¨  Let’s assume equiprobable classes, and higher loss for errors on 
Class 2, specifically: 

    

p(x ω 1 )  N µ1 ,σ 2( )
p(x ω2 )  N µ2 ,σ 2( )

 
µ1 = 0, µ2 = 1, and σ 2 = 1

2

 
λ21 = 1,  λ12 = 1

2 .
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Results 

¨  The threshold has shifted to the left – why? 



Sept 12, 2012 

End of Lecture 
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Bayesian Decision Theory:  Topics 

1.  Probability 
2.  The Univariate Normal Distribution 
3.  Bayesian Classifiers 
4.  Minimizing Risk 
5.  Nonparametric Density Estimation 

6.  Training and Evaluation Methods 
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Nonparametric Methods 

¨  Parametric distribution models are restricted to specific 
forms, which may not always be suitable; for example, 
consider modelling a multimodal distribution with a 
single, unimodal model. 

¨  You can use a mixture model, but then you have to 
decide on the number of components, and hope that 
your parameter estimation algorithm (e.g., EM) 
converges to a global optimum! 

¨  Nonparametric approaches make few assumptions 
about the overall shape of the distribution being 
modelled, and in some cases may be simpler than using 
a mixture model. 



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

60 

Histogramming 

¨  Histogram methods partition 
the data space into distinct 
bins with widths Δi and count 
the number of observations, ni, 
in each bin. 

•  Often, the same width is used 
for all bins, Δi = Δ. 

•  Δ acts as a smoothing 
parameter. 

¨  In a D-dimensional space, using 
M bins in each dimension will 
require MD bins! 

The curse of dimensionality 
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Kernel Density Estimation 

¨  Assume observations drawn 
from a density p(x) and 
consider a small region R 
containing x such that 

¨  The expected number K out 
of N observations that will 
lie inside R is given by 

¨  If the volume V of R is 
sufficiently small, p(x) is 
approximately constant 
over R and 

¨  Thus 
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Kernel Density Estimation 

Kernel Density Estimation: fix V, estimate K 
from the data. Let R be a hypercube centred 
on x and define the kernel function (Parzen 
window) 

 

It follows  that        and hence 
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Kernel Density Estimation 

To avoid discontinuities in p(x), use a smooth kernel, e.g. a Gaussian 

(Any kernel k(u) such that 

will work.) h acts as a smoother. 
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KDE Example 
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Kernel Density Estimation 

¨  Problem:  if V is fixed, there may be too few points 
in some regions to get an accurate estimate. 
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Nearest Neighbour Density Estimation 

Nearest Neighbour 
Density Estimation: fix K, 
estimate V from the data. 
Consider a hypersphere 
centred on x and let it 
grow to a volume V* that 
includes K of the given N 
data points. Then 

for j=1:np �
     d=sort(abs(x(j)-xi)); �
     V=2*d(K(i)); �
     phat(j)=K(i)/(N*V); �
end�
 



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

67 

Nearest Neighbour Density Estimation 

Nearest Neighbour 
Density Estimation: fix K, 
estimate V from the data. 
Consider a hypersphere 
centred on x and let it 
grow to a volume V* that 
includes K of the given N 
data points. Then 

K=5

 

 
True distribution
Training data
KNN Estimate

K=10

K=100
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Nearest Neighbour Density Estimation 

¨  Problem:  does not generate a proper density (for 
example, integral is unbounded on    ) 

¨  In practice, on finite domains, can normalize. 
¨  But makes strong assumption on tails  

  
D

  

∝
1

x

⎛
⎝⎜

⎞
⎠⎟
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Nonparametric Methods 

¨  Nonparametric models (not histograms) require 
storing and computing with the entire data set.  

¨  Parametric models, once fitted, are much more 
efficient in terms of storage and computation. 
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K-Nearest-Neighbours for Classification 

¨  Given a data set with Nk data points from class Ck 
and                  ,  we have 

¨  and correspondingly 

¨  Since                    , Bayes’ theorem gives 
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K-Nearest-Neighbours for Classification 

K = 1 K = 3 
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¨  K acts as a smoother 
¨   As              , the error rate of the 1-nearest-

neighbour classifier is never more than twice the 
optimal error (obtained from the true conditional class 
distributions). 

K-Nearest-Neighbours for Classification  
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KNN Example 
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Naïve Bayes Classifiers 

¨  All of these nonparametric methods require lots of data 
to work.  If        training points are required for 
accurate estimation in 1 dimension, then    points are 
required for D-dimensional input vectors. 

¨  It may sometimes be possible to assume that the 
individual dimensions of the feature vector are 
conditionally independent.  Then we have 

¨  This reduces the data requirements to  
  
p x | ω i( ) = p xj | ω i( )

j =1

D
∏

  O ND( )

   O DN( ) .

  O N( )
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Bayesian Decision Theory:  Topics 

1.  Probability 
2.  The Univariate Normal Distribution 
3.  Bayesian Classifiers 
4.  Minimizing Risk 
5.  Nonparametric Density Estimation 
6.  Training and Evaluation Methods 
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Machine Learning System Design 

¨  The process of solving a particular classification or 
regression problem typically involves the following 
sequence of steps: 
1.  Design and code promising candidate systems 
2.  Train each of the candidate systems (i.e., learn the 

parameters) 
3.  Evaluate each of the candidate systems 
4.  Select and deploy the best of these candidate systems 
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Using Your Training Data 

¨  You will always have a finite amount of data on 
which to train and evaluate your systems. 

¨  The performance of a classification system is often 
data-limited:  if we only had more data, we could 
make the system better. 

¨  Thus it is important to use your finite data set wisely. 
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Overfitting 

¨  Given that learning is often data-limited, it is 
tempting to use all of your data to estimate the 
parameters of your models, and then select the 
model with the lowest error on your training data. 

¨  Unfortunately, this leads to a notorious problem 
called over-fitting. 
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Example: Polynomial Curve Fitting   
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Sum-of-Squares Error Function 
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How do we choose M, the order of the model? 
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1st Order Polynomial 
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3rd Order Polynomial 
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9th Order Polynomial 
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Over-fitting 

Root-‐Mean-‐Square	  (RMS)	  Error:	  
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Overfitting and Sample Size 

9th	  Order	  Polynomial	  
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Over-fitting and Sample Size 

9th	  Order	  Polynomial	  
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Methods for Preventing Over-Fitting 

¨  Bayesian parameter estimation 
¤ Application of prior knowledge regarding the probable 

values of unknown parameters can often limit over-fitting of 
a model 

¨  Model selection criteria 
¤ Methods exist for comparing models of differing complexity 

(i.e., with different types and numbers of parameters) 
n  Bayesian Information Criterion (BIC) 
n  Akaike Information Criterion (AIC) 

¨  Cross-validation 
¤  This is a very simple method that is universally applicable. 
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Cross-Validation 

¨  The available data are partitioned into disjoint 
training and test subsets. 

¨  Parameters are learned on the training sets.   
¨  Performance of the model is then evaluated on the 

test set. 
¨  Since the test set is independent of the training set, 

the evaluation is fair:  models that overlearn the 
noise in the training set will perform poorly on the 
test set. 
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Cross-Validation:  Choosing the Partition 

¨  What is the best way to partition the 
data? 
¤  A larger training set will lead to more accurate 

parameter estimation. 
¤  However a small test set will lead to a noisy 

performance score. 
¤  If you can afford the computation time, repeat 

the training/test cycle on complementary 
partitions and then average the results.  This 
gives you the best of all worlds:  accurate 
parameter estimation and accurate evaluation. 

¤  In the limit:  the leave-one-out method   
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A useful MATLAB function 

¨  randperm(n) 
¤ Generates a random permutation of the integers from 

1 to n 
¤ The result can be used to select random subsets from 

your data 



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

92 

Bayesian Decision Theory:  Topics 

1.  Probability 
2.  The Univariate Normal Distribution 
3.  Bayesian Classifiers 
4.  Minimizing Risk 
5.  Nonparametric Density Estimation 
6.  Training and Evaluation Methods 


